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Small-angle X-ray scattering (SAXS) from one-dimensional transforming systems has been simulated. In 
order to show two limiting types of transformation behaviour, both 'classical' growth and the spinodal 
demixing of chain conformation defects have been modelled. Nests of simulated SAXS curves represent stages 
in the transformation process. It is shown that the following behaviour can be used to characterize the type of 
transformation: (a) motion of the SAXS peak position, (b) peak shape change, (c) second-order peak intensity, 
(d) intensity cross-over, and (e) intensity decrease. 
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INTRODUCTION 

An area of long-standing interest and importance in 
polymer science is the development of microstructure in 
semicrystalline polymers. A clear understanding of the 
processes involved provides the basis for the 
rationalization of industrial solidification and heat- 
treatment stages. 

For some time it has been possible to characterize the 
development of overall crystallinity and of spherulites. In 
these cases, instruments for rapid data collection have 
long been available. On the other hand, in situ 
measurement of the development of crystallite colonies is 
relatively recent, since rapid measurement awaited new 
methodologies. 

Specifically, microstructure at the crystallite lamellae 
level can be characterized by electron microscopy or by 
small-angle X-ray scattering (SAXS). Electron micros- 
copy is inherently limited in its ability to follow 
microstructural change directly, since the specimen is 
damaged by the electron beam. SAXS produces no 
specimen deterioration, but until approximately ten years 
ago was restricted to in situ measurement of only very 
slow processes 1-4. The introduction of position-sensitive 
detectors and synchrotron X-ray sources has dramatically 
reduced the time needed to obtain SAXS data and has 
thereby made in situ SAXS (ISSAXS) measurements of 
microstructural rearrangements possible. 

ISSAXS measurements almost trivially yield long 
spacing data, but can also yield complete SAXS intensity 
maps. Similar results are also reported for materials 
crystallizing isothermally and then quenched to retain the 
structure present at the crystallization temperature, SAXS 
data being acquired later at room temperature. Such 
intensity maps or curves have been reported for the 
quiescent melt-crystallization of linear polyethylene 5'6, 
poly(ethylene terephthalate) ~, a poly(ethylene oxide)/ 
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polystyrene/poly(ethylene oxide) triblock copolymer 5, 
and poly(tetramethyl-p-silphenylene siloxane) 8 (TMPS); 
for the crystallization of stretched melts of poly- 
propylene 9'1°, lightly crosslinked polyisoprene 1~, and 
poly(ethylene terephthalate)12 14; and of the re- 
crystallization of cold-drawn polypropylene~S and 
nylon-6,6. ~6 

The evolution of SAXS intensity curves during a 
microstructural transformation embodies a great deal of 
information regarding the microstructural development 
itself. However, only infrequently has use been made of the 
details of the scattering curves. In the present work, 
simulated scattering curves for somewhat idealized 
crystallization processes are presented. Such nests of 
curves provide qualitative insights into the types of 
processes which are involved in the crystallization 
process. The goal of this simulation study is to provide the 
experimenter with nests of SAXS curves against which he 
may qualitatively compare his data. 

Of particular interest has been the proposition that, 
under certain conditions of crystallization under strain, 
crystallization may progress by the spinodal demixing of 
chain defects 4'9'1°'14'15'17. In spinodal demixing, there 
are no sharp phase boundaries; rather, a continuously 
and periodically modulated density distribution increases 
in amplitude with time, until the peak density approaches 
that of the crystal phase and the trough density 
approaches that of the melt or glass. Such a process is in 
sharp contrast to classical nucleation and growth, which 
is known to prevail in slow, quiescent crystallization. In 
classical processes, the newly-formed crystalline regions 
immediately assume the equilibrium phase properties (to 
a first approximationl and the boundary between host 
melt (or glass} and crystal is sharp. Transformation 
progresses by the conversion of more melt to crystal, 
the motion of the crystal/melt boundary into the melt or 
by the creation of new crystallites. The detailed differences 
between these two potential modes of transformation 
should appear as detailed differences in the distribution of 
SAXS intensity in reciprocal space. 
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In the following two sections are described simulations 
of spinodal and of classical growth processes, respectively. 
The simulations are for relatively ideal cases, in one 
dimension. While an analytical simplification, the one- 
dimensionality applies directly to transformations in 
highly strained systems and to Lorentz-corrected results 
in spherulitic (spherically symmetric) systems. In the final 
section, some generalizations arising from the simulations 
are brought together. 

zeros R(s) has its maximum at 

1 / ~ 2 f \  2 
Smax -- 4 ~ N ~ 2 B 2  ) + 2r] Y (4) 

We note that Sc = N~Smax. At all s > so, R(sJ < 0 and the 
intensity decreases. 

In equation (3), l(s,O) is the scattered intensity due to the 
initial configuration of the system. For a random mix of 
components, 

MODELS AND SIMULATIONS 

Case 1: Spinodal decomposition 
Spinodal decomposition refers to the continuous 

demixing of a multicomponent system. One envisages 
the creation of a system in which the composition is 
represented by a continuous, periodic distribution of the 
components. This distribution can be described by a 
Fourier series or integral of standing composition waves 
of amplitudes A(s), where s is the wave number of a given 
Fourier component. As demixing continues, some 
Fourier components grow in amplitude, while others 
shrink. The kinetics of this situation have been analysed 
by Cahn 18'19, Swanger et al. 2°, de Fontaine 21, C o o k  22 
and Williams ~'3. 

Cahn's linearized analysis results in the following rate 
expression for the amplitude: 

A(s~ t) = A(s~ 0)exp[R(s)t] (1) 

Here R(s), the amplification factor, depends on the 
interdiffusion coefficient/), on the second derivative of the 
Helmholtz free energy f of the system with respect to 
composition cB, and on various material constants via 

I . 2r/2 Y 8~z2Ks 2 "] 
R(s)=4ns2D l +  (azf/82cZ) q ~ ) ]  (2) 

where q is the linear strain per unit composition difference, 
Y= E/ (1 -  v) for an isotropic solid in which E is Young's 
modulus and v is Poisson's ratio, and K is the 'gradient 
energy coefficient'. The second term on the right of 
equation (2) represents coherency strains; the third term 
represents an incipient interfacial energy. 

With respect to polymer crystallization, one envisages a 
chain which will become part of an existing crystal. Those 
repeat units which are already oriented parallel to the 
chain axis of the crystal constitute one component. Repeat 
units of any other orientation are the other component. In 
such a model the non-parallel, or defective, units may 
migrate along the chain. An end state would be attained 
when most defects accumulate in a melt-like region and 
most non-defective units align in crystalline registry. The 
early stages of transformation could proceed by spinodal 
decomposition. 

The intensity of scattering at time t from a system 
undergoing spinodal decomposition is given by t 8,19 

I (s,t) = I (s,o)exp [2R(s)t] (3) 

It can be seen from equations (2) and (3) that R(s), and 
consequently, I(s,t), is always a peaked function in the 
spinodal region. R(0 has zeros at s = 0  and 
sc~= - -  [(t~zf/~c 2 + 2r/2 Y] x/z/(2(Zn)~K~).  Between these 

l (s,O) = < l f .= l> - I < f .  >12 (5) 

where f ,  is the scattering amplitude from one isolated 
structural unit and the carets denote spatial averaging. 
I(s,O) for random mixing is nearly constant over the small- 
angle regime. In the computations to be described here 
I(s,O) is taken as an arbitrary scaling constant Io. 

The development of SAXS curves during spinodal 
decomposition was simulated using equations (2) and (3). 
We note that equation (3) can be simplified to 

I(s~t) = C l exp[ Czs2 (1 --  C3s2 ) t ]  (6) 

Here C 1, C2 and C 3 are scaling constants. The constant C 3 
controls the position of the scattering peak and has been 
adjusted here to produce a peak representing a periodicity 
of 100 A. In order to follow the course of scattering curve 
development, the values assigned to the scaling constants 
are unimportant, provided that the time t is carried 
through a broad range. In the present computations, the 
following constant values were used: C1 = 1, 
C 2 = 300 A 2 S - 1, C3 = 5000/~2. 

Figure 1 is a set of computed SAXS curves for linearized 
spinodal decomposition. The associated kinetics of 
development of the intensity at the maximum is shown in 
Figure 2. 

The required exp(At) kinetics are apparent. Physically, 
at longer times the intensity must slowly approach an 
asymptote; however the transition to this behaviour has 
not been explored here. It is useful to observe, in Figure 1, 
that the SAXS curves become narrower with increasing 
time; for spinodal decomposition, the curves are not self- 
similar. As an example, shown in Figure 3 are curves for 
t = 10 and t = 100. Shown also is the t = 10 curve with the 
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Figure 1 Simulated SAXS curves for spinodal demixing of chain 
conformational defects. Curves are shown for equally spaced time steps 
(seconds) 
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Figure 3 Simulated SAXS curves for spinodal demixing for t - 1 0  
(curve A) and 1=100 (curve C). The t = 1 0  curve with intensities 
multiplied by 10 is curve B 

intensity multiplied by a factor often in order to bring the 
t =  l0 and t =  100 curves to comparable intensities. The 
absence of self-similarity is apparent. 

In some experimental studies of SAXS curve 
development during transformation, the scattering curve 
for t = 0  is taken as the 'background'  curve and is 
subtracted from curves at all t > 0. If the t = 0 curve is 
subtracted in this way from each of the curves of Figure 1, 
the result is as shown in Figure 4. The curves of Figure 4, 
unlike those of Figure 1, are self-similar. Furthermore, the 
intensity function at sufficiently small times can be written 

I {s,t ) -  l (s,O) ~- l (s,O)[ 2R(s)t ] (7) 

Figure 5 
This function is a straight line through the origin. 

A final comment  on scattering curves for spinodal 
decomposition relates to their shape. If the reciprocal 
space variable is taken as s 2, rather than s, the curve shape 
is gaussian. This is seen by replacing s in equation (6) by 
b t,'z. This replacement gives 

l (s,t ) = C j (s,O)exp[ - (C sb - C6)t] (8) 

where 

C,~ = exp(CZt) 

C2 =C,,C3 

C~ = C2/4C3 

polymer crystallization: R. Vignaud and J. M. Schultz 

Equation (8) is a gaussian, offset from the origin. Figure 5 
shows the intensity at t =  100 plotted against s 2 rather 
than against s. The gaussian shape is obvious. 

Case 2: Classical growth 
In this case, the intent is to provide a somewhat 

idealized model of the crystallization of spherulites 24'25 or 
of row structures z~'z 7 from the melt or the glass. For both 
spherulites and row structures, nucleation events are 
followed by the growth of crystallites from the nucleating 
sites. A two-phase lamellar structure develops directly 
from the melt or glass. As depicted in Figure 6, stacks of 
lamelliform crystals grow from the nucleating centre, 
through the addition of lamellae to the stack (Figure 6a) 
and also by the lateral growth of the crystalline lamellae 
(Figure 6b). The crystallites are separated from each other 
by amorphous layers. The process of nucleation and stack 
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Figure 4 Normalized SAXS curves for spinodal demixing, l(s,t ) -  1 (s,0) 
vs. s. Curves are labelled with values of t (seconds) 
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Figure 6 Growth of stacks of crystalline lamellae: (a) increase in the 
number of stack elements, (b) lateral growth of stack elements 
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extension is termed 'primary crystallization'. The as- 
formed crystallites and amorphous material are taken to 
be in the equilibrium state of the crystal and melt (or glass) 
phases. In addition, lamellae which have already formed 
thicken at the expense of the amorphous matter 28-3l. 
This process is termed 'secondary crystallization'. In the 
case of spherulitic growth from a quiescent melt or glass, 
many internally coherent stacks develop radially from 
one nucleating centre. A lateral direction of the lamellar 
crystallites is oriented radially. For row structures, the 
stacking direction is constant for all stacks in the material. 
The above model is broadly in line with what is known 
about the crystallization of polymers from the melt. 

The nucleation events are to some extent distributed in 
time and space. The degree to which extrinsic or intrinsic 
heterogeneities are available as heterogeneous nucleation 
sites and the degree to which each heterogeneity is 
effective control the distribution of nucleated sites. While 
a general model for polymer crystallization must take 
account of the temporal distribution of nuclei, it has been 
assumed in the present work that all stacks within the 
material nucleate at time zero. This assumption is 
consistent with SAXS results on the crystallization of 
stretched rubber 32 and of poly(ethylene terephthalate) 33 
from the highly-stretched melt. For crystallization from 
the quiescent melt, it would be necessary to include the 
distribution of nucleation times into the analysis. Thus the 
present simulation should be reasonably valid for stress- 
assisted crystallization, but would be only broadly 
indicative of what would happen in the spherulitic case. 

Several more specific assumptions have been made. The 
assumptions relate finally to the computation of the 
scattered intensity l(s,t). In general, the scattered intensity 
is the sum of two terms, I~ and I2, which are respectively 
the Bragg scattering due to the periodicity within the 
stack and the diffuse scattering due to variations of 
lamellar thickness within the stack. The periodic term can 
be written 

11 (s,t,) = F 2 (s,t )Z (s,t) (9) 

where s, the scattering parameter, is 2sin0/2; F, the 
'structure factor', represents the scattering amplitude of 
one isolated repeat unit (one crystallite); and Z(s,t), the 
lattice factor, represents the quasiperiodic distribution of 
crystallites in one-dimension. The assumptions are as 
follows. 

(1) The one-dimensional stack of parallel crystallites is 
basically periodic, but the intercrystalline distances are 
distributed in a paracrystalline 34 manner. The degree of 
disorder is characterized by a parameter g, which is a 
measure of the width of an assumed gaussian distribution 
of intercrystallite distances L(n) about the average value 
L, g increasing with the breadth of that distribution. This 
assumption results, for a stack on N crystallites, in a 
lattice factor of the form 35, 

N 

ZN(s)= 1 + 2 ~ (1 -m/N)p"cos(2nm'sL) (10) 
m = l  

where 
p = exp(-  2g2rr2L2s2) (11) 

For very long stacks (N---~), the lattice factor becomes 

ZN(s) = (1 -p2)/[1 +p2 _ 2pcos(27rsL)] (12) 

It should be noted that in the above equations the time is 
characterized by the number N of crystallites 
instantaneously in the stack. 

(2) The stack growth rate is constant in time, a new 
crystallite forming every T seconds. Since this growth is 
regular, the number N ofcrystallites can also be used as an 
index of the transformation time. 

(3) Crystals thicken according to a logarithmic time 
law. For the nth crystallite in a stack, 

L ,=  Lo + Ll f(t,n ) (13) 

where L o is the initial crystallite thickness, L 1 a parameter 
which scales the rate of crystal thickening, and 

fit,n) = log(t/nT) for t > nT 

fit,n)=O for t < nT 
(14) 

(4) Stack extension (primary crystallization) and 
crystal thickening occur simultaneously, each crystal 
beginning to thicken as soon as it forms, as indicated in 
equation (14). 

(5) Although the thickest crystals in a stack are those 
which formed first and the thinnest those which formed 
most recently, it is taken, for computational simplicity 
that the crystals of various thickness are randomly 
arranged in the stack. This simplification allows the 
diffuse scattering 12 to be written, 

I2 = N ( I F f >  - NI (F,>I z (15) 

where the carets denote averaging over all elements of the 
stack. 

Using all of the above, the scattered intensity can now 
be computed according to 

I(s,t)=I(F,)IZZN(s)+N(IF, IZ ) -N ] (F , ) I  2 (16) 

In equations (15) and (16), the structure factor F. is the 
scattering from the nth plate and is written 

F.(s,t ) = Ap { sin[ xsL.(t )] } /xs 

Simulations were carried out under four conditions of 
initial lamellar thickness and rate of thickening. The 
periodicity of stacking is maintained constant at 
L =  100 A. Initial crystallite thicknesses L o used are 50 A 
and 20A. For Lo=50A,  the thickening rate scale 
parameter L1 was assigned values of 10/~ and 1 A. For 
Lo = 20 A, thickening rate scale parameters of 20 A and 
2 A were used. In both cases, the transformation was 
allowed to proceed until N = 100. 

Figure 7 shows the simulated transformation for 
L0=50 ~,, L1 = 10 A at times from T to 5T (Figure 7a) 
and 20T to 100T (Figure 7b). The results for the simulated 
transformation for L0=50 A, and L 1 = 1 A (a slower 
thickening rate) are qualitatively very similar to Figure 7 
and are not shown. For L o = 50 A, a SAXS Bragg peak 
builds quickly from an initial curve of continuously 
decreasing intensity (the square of the single platelet 
scattering factor). At early stages, the Bragg peak moves 
gradually toward larger angle, as the continuous 
scattering background vanishes. Thereafter, the peak 
position is sensibly constant. The change of peak position 
with transformation time is shown in Figure 8 for 
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Lo= 50  A, L~=10A.  The change of intensity with 
transformation time for L 0 = 50 A is shown in Figure 9. 
Up to the time at which stack-building is complete 
( T =  100), the intensity builds similarly for L~ = 1 A and 
L~ = 10 A. However, after T =  100, the intensity drops 
rapidly for the case of rapid secondary crystallization 
(L 1 = 10 A), but immeasurably for L l = 1 A. The decrease 
of intensity at the first order maximum when the complete 
stack is formed reflects the property that the structure 
factor at that point, F,(1/L,t) exhibits a maximum at L,(t) 
0.5L, which was the initial thickness considered. At the 
same time the structure factor at the 2d order maximum, 

polymer crystallization. R. Vignaud and J. M. Schultz 

F,(2/L,t) is zero if L,(t)=0.5L, and increases for higher 
L,(t).  At that point, F,(s,t) is reduced to 
F,(2/L,t)=ApL(sin(2n)/2n)=O. The presence or absence 
ofa 2d order maximum is governed by the structure factor 
and the average degree of crystallinity. This is particularly 
obvious in the simulated SAXS curves for longer lines, 
corresponding to the first case (Lo = 50 A, L, = 10 A) and 
shown in Figure 10: the first order peak decreases while 
the second order grows. 
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Figure 9 Kinetics of peak intensity development for 'classical growth" 
with Lo=50  A and L l = 1 /~ (upper curve) and L =  10/~ (lower curve): 
(a) linear time axis, (b) logarithmic time axis 
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Scattering curves for this simple growth model are 3c 
nearly self-similar. Figure 11 shows, for L o = 5 0 A  and 
L~=IOA,  the scattering curves for 10T and lOOT. In ~ 2~ 
addition, the 10T curve multiplied by 10 is also shown, in ~ 
order to place it at nearly the same intensity level as the ~" 2¢ 
100T curve. The 100T and the modified 10T curves are 
very similar. The self-similarity improves as curves from ~ 15 
longer times are compared, because the early-time shape .~ 
changes are then gone. ~ Io 

c 

Simulated SAXS curves for the initially thinner 
cystallites (L o = 20 A) and slow thickening (L t = 2 A) are 
shown in Figure 12. The principal difference between this 
case and that for L o = 50 A is the presence and growth of a 
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Figure  12 Simulated 'classical growth' SAXS curves for Lo=20 A, 
L~ = 2 A. Curves are labelled with values of t/T 
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Figure 14 Simulated SAXS curves for 'classical growth'  with Lo = 20 A, 
L ~ = 2 0 A ,  for t=lOOT (lowest curve), t=5OOT second curve, and 
t = 1000T (highest curve). The intensity order at s=0 .02  A ~ is in the 
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second-order maximum. Simulation with L o = 2 0 A ,  
L 1 =20  A (not shown) is qualitatively similar to that 
shown in Figure 12, except that the second order peak 
grows somewhat less rapidly. 

Figure 13 shows the development of the first-order peak 
intensity with transformation time for Lo = 20 A. During 
stack building (T~< 100), the intensity builds essentially 
linearly, with crystal thickening contributing markedly to 
the rate of the linear increase. The expected maximum 
occurs at longer times. 
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As the transformation progresses for L0=20/~,  the 
crystallites thicken gradually toward L/2 and the intensity 
of the second order maximum decreases. This effect is 
shown in Fi,qure 14. 

As has been shown in the above examples, for degrees of 
crystallinity above 50°,,o, with increasing crystallinity the 
first-order peak decreases in intensity and the second- 
order peak increases. This is shown explicitly in Fiyure 15, 
where scattering curves for an average degree of 
crystallinity of 50°0, 60');, 70'~; and 80~; are shown. It is to 
be noticed also that the first order maximum shifts to 
slightly smaller angles, correlated with an intensity 
decrease of the peak. 

polymer crystallization." R. Vignaud and J. M. Schultz 

For most classical growth behaviour the intensity curves 
elevate uniformly through all angles and no cross-over is 
ordinarily to be observed. 

I n t e n s i t y  decrease  

Only for the case of classical growth can the SAXS 
peaks decrease in intensity with degree of transformation. 
This occurs as the crystallinity exceeds 50°,,. 

SUMMARY 

The scattering from classical growth transformations with 
initial stack crystallinities lower than and equal to the 
critical value of 50°0 have been simulated and compared. 
In the former case, the intensity moves smoothly through 
a maximum. For the latter case, when the rate of crystal 
thickening is much slower than that of stack growth, the 
transition from an increasing to a decreasing intensity 
occurs sharply when stack growth is complete. The 
presence and rate of change of a second-order maximum 
depends on the initial stack crystallinity and on the rate of 
crystal thickening. It is to be a reemphasized that only for 
50"~, crystallinity is there no intensity at the second order 
position. 
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DISCUSSION 

As has been shown above, there are several systematic 
differences in small-angle scattering curve development 
between classical growth and spinodal demixing. These 
differences are summarized below: 

Peak position 
For classical growth, the first-order SAXS peak shows a 

gradual movement toward higher angle initially, 
thereafter remaining substantially constant. In the 
spinodal case, the peak position is constant at all times. 

Peak shape 
For classical growth, the first-order peaks are self- 

similar, once they have attained their constant angular 
position. In the spinodal case, the peaks are self-similar 
only after the zero-time peak has been subtracted. 

Second-order 
For classical growth, intensity at the second-order peak 

is always observed except when the degree of crystallinity 
within the stack is 50'),,~,. The relative height of the second 
order peak decreases symmetrically with crystallinity 
from 0(,; to 50",~; and from 100'),o to 50°~;. For the spinodal 
process, no intensity is found at the second-order position. 

Intensity cross-ot,er 
For the spinodal case, there is an intensity cross-over at 

some critical angle 20~ beyond the peak. For an ideal 
spinodal, 20~---\//2(20p), where (20)p is the peak position. 
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